Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops.

Identifieur interne : 000810 ( Main/Exploration ); précédent : 000809; suivant : 000811

WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops.

Auteurs : Mohammad Hossein Borhan [Canada] ; Eric B. Holub ; Colin Kindrachuk ; Mansour Omidi ; Ghazaleh Bozorgmanesh-Frad ; S Roger Rimmer

Source :

RBID : pubmed:20447277

Descripteurs français

English descriptors

Abstract

White blister rust caused by Albugo candida (Pers.) Kuntze is a common and often devastating disease of oilseed and vegetable brassica crops worldwide. Physiological races of the parasite have been described, including races 2, 7 and 9 from Brassica juncea, B. rapa and B. oleracea, respectively, and race 4 from Capsella bursa-pastoris (the type host). A gene named WRR4 has been characterized recently from polygenic resistance in the wild brassica relative Arabidopsis thaliana (accession Columbia) that confers broad-spectrum white rust resistance (WRR) to all four of the above Al. candida races. This gene encodes a TIR-NB-LRR (Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat) protein which, as with other known functional members in this subclass of intracellular receptor-like proteins, requires the expression of the lipase-like defence regulator, enhanced disease susceptibility 1 (EDS1). Thus, we used RNA interference-mediated suppression of EDS1 in a white rust-resistant breeding line of B. napus (transformed with a construct designed from the A. thaliana EDS1 gene) to determine whether defence signalling via EDS1 is functionally intact in this oilseed brassica. The eds1-suppressed lines were fully susceptible following inoculation with either race 2 or 7 isolates of Al. candida. We then transformed white rust-susceptible cultivars of B. juncea (susceptible to race 2) and B. napus (susceptible to race 7) with the WRR4 gene from A. thaliana. The WRR4-transformed lines were resistant to the corresponding Al. candida race for each host species. The combined data indicate that WRR4 could potentially provide a novel source of white rust resistance in oilseed and vegetable brassica crops.

DOI: 10.1111/j.1364-3703.2009.00599.x
PubMed: 20447277
PubMed Central: PMC6640464


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops.</title>
<author>
<name sortKey="Borhan, Mohammad Hossein" sort="Borhan, Mohammad Hossein" uniqKey="Borhan M" first="Mohammad Hossein" last="Borhan">Mohammad Hossein Borhan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2. borhanh@agr.gc.ca</nlm:affiliation>
<country wicri:rule="url">Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Holub, Eric B" sort="Holub, Eric B" uniqKey="Holub E" first="Eric B" last="Holub">Eric B. Holub</name>
</author>
<author>
<name sortKey="Kindrachuk, Colin" sort="Kindrachuk, Colin" uniqKey="Kindrachuk C" first="Colin" last="Kindrachuk">Colin Kindrachuk</name>
</author>
<author>
<name sortKey="Omidi, Mansour" sort="Omidi, Mansour" uniqKey="Omidi M" first="Mansour" last="Omidi">Mansour Omidi</name>
</author>
<author>
<name sortKey="Bozorgmanesh Frad, Ghazaleh" sort="Bozorgmanesh Frad, Ghazaleh" uniqKey="Bozorgmanesh Frad G" first="Ghazaleh" last="Bozorgmanesh-Frad">Ghazaleh Bozorgmanesh-Frad</name>
</author>
<author>
<name sortKey="Rimmer, S Roger" sort="Rimmer, S Roger" uniqKey="Rimmer S" first="S Roger" last="Rimmer">S Roger Rimmer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20447277</idno>
<idno type="pmid">20447277</idno>
<idno type="doi">10.1111/j.1364-3703.2009.00599.x</idno>
<idno type="pmc">PMC6640464</idno>
<idno type="wicri:Area/Main/Corpus">000820</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000820</idno>
<idno type="wicri:Area/Main/Curation">000820</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000820</idno>
<idno type="wicri:Area/Main/Exploration">000820</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops.</title>
<author>
<name sortKey="Borhan, Mohammad Hossein" sort="Borhan, Mohammad Hossein" uniqKey="Borhan M" first="Mohammad Hossein" last="Borhan">Mohammad Hossein Borhan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2. borhanh@agr.gc.ca</nlm:affiliation>
<country wicri:rule="url">Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Holub, Eric B" sort="Holub, Eric B" uniqKey="Holub E" first="Eric B" last="Holub">Eric B. Holub</name>
</author>
<author>
<name sortKey="Kindrachuk, Colin" sort="Kindrachuk, Colin" uniqKey="Kindrachuk C" first="Colin" last="Kindrachuk">Colin Kindrachuk</name>
</author>
<author>
<name sortKey="Omidi, Mansour" sort="Omidi, Mansour" uniqKey="Omidi M" first="Mansour" last="Omidi">Mansour Omidi</name>
</author>
<author>
<name sortKey="Bozorgmanesh Frad, Ghazaleh" sort="Bozorgmanesh Frad, Ghazaleh" uniqKey="Bozorgmanesh Frad G" first="Ghazaleh" last="Bozorgmanesh-Frad">Ghazaleh Bozorgmanesh-Frad</name>
</author>
<author>
<name sortKey="Rimmer, S Roger" sort="Rimmer, S Roger" uniqKey="Rimmer S" first="S Roger" last="Rimmer">S Roger Rimmer</name>
</author>
</analytic>
<series>
<title level="j">Molecular plant pathology</title>
<idno type="eISSN">1364-3703</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis Proteins (chemistry)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Brassica (genetics)</term>
<term>Brassica (microbiology)</term>
<term>Chromosome Segregation (genetics)</term>
<term>Crops, Agricultural (genetics)</term>
<term>Genes, Plant (genetics)</term>
<term>Immunity, Innate (genetics)</term>
<term>Immunity, Innate (immunology)</term>
<term>Oomycetes (pathogenicity)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Oils (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Protein Structure, Tertiary (MeSH)</term>
<term>Proteins (genetics)</term>
<term>RNA Interference (MeSH)</term>
<term>Seeds (genetics)</term>
<term>Seeds (microbiology)</term>
<term>Virulence (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Brassica (génétique)</term>
<term>Brassica (microbiologie)</term>
<term>Graines (génétique)</term>
<term>Graines (microbiologie)</term>
<term>Gènes de plante (génétique)</term>
<term>Huiles végétales (métabolisme)</term>
<term>Immunité innée (génétique)</term>
<term>Immunité innée (immunologie)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Oomycetes (pathogénicité)</term>
<term>Produits agricoles (génétique)</term>
<term>Protéines (génétique)</term>
<term>Protéines d'Arabidopsis (composition chimique)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Structure tertiaire des protéines (MeSH)</term>
<term>Ségrégation des chromosomes (génétique)</term>
<term>Virulence (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Arabidopsis Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines d'Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Brassica</term>
<term>Chromosome Segregation</term>
<term>Crops, Agricultural</term>
<term>Genes, Plant</term>
<term>Immunity, Innate</term>
<term>Plant Diseases</term>
<term>Proteins</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Brassica</term>
<term>Graines</term>
<term>Gènes de plante</term>
<term>Immunité innée</term>
<term>Maladies des plantes</term>
<term>Produits agricoles</term>
<term>Protéines</term>
<term>Protéines d'Arabidopsis</term>
<term>Ségrégation des chromosomes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Immunité innée</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Immunity, Innate</term>
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Oils</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Brassica</term>
<term>Graines</term>
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Brassica</term>
<term>Plant Diseases</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Huiles végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Oomycetes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Protein Structure, Tertiary</term>
<term>RNA Interference</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Interférence par ARN</term>
<term>Structure tertiaire des protéines</term>
<term>Virulence</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">White blister rust caused by Albugo candida (Pers.) Kuntze is a common and often devastating disease of oilseed and vegetable brassica crops worldwide. Physiological races of the parasite have been described, including races 2, 7 and 9 from Brassica juncea, B. rapa and B. oleracea, respectively, and race 4 from Capsella bursa-pastoris (the type host). A gene named WRR4 has been characterized recently from polygenic resistance in the wild brassica relative Arabidopsis thaliana (accession Columbia) that confers broad-spectrum white rust resistance (WRR) to all four of the above Al. candida races. This gene encodes a TIR-NB-LRR (Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat) protein which, as with other known functional members in this subclass of intracellular receptor-like proteins, requires the expression of the lipase-like defence regulator, enhanced disease susceptibility 1 (EDS1). Thus, we used RNA interference-mediated suppression of EDS1 in a white rust-resistant breeding line of B. napus (transformed with a construct designed from the A. thaliana EDS1 gene) to determine whether defence signalling via EDS1 is functionally intact in this oilseed brassica. The eds1-suppressed lines were fully susceptible following inoculation with either race 2 or 7 isolates of Al. candida. We then transformed white rust-susceptible cultivars of B. juncea (susceptible to race 2) and B. napus (susceptible to race 7) with the WRR4 gene from A. thaliana. The WRR4-transformed lines were resistant to the corresponding Al. candida race for each host species. The combined data indicate that WRR4 could potentially provide a novel source of white rust resistance in oilseed and vegetable brassica crops.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20447277</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>09</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1364-3703</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2010</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Molecular plant pathology</Title>
<ISOAbbreviation>Mol Plant Pathol</ISOAbbreviation>
</Journal>
<ArticleTitle>WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops.</ArticleTitle>
<Pagination>
<MedlinePgn>283-91</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/j.1364-3703.2009.00599.x</ELocationID>
<Abstract>
<AbstractText>White blister rust caused by Albugo candida (Pers.) Kuntze is a common and often devastating disease of oilseed and vegetable brassica crops worldwide. Physiological races of the parasite have been described, including races 2, 7 and 9 from Brassica juncea, B. rapa and B. oleracea, respectively, and race 4 from Capsella bursa-pastoris (the type host). A gene named WRR4 has been characterized recently from polygenic resistance in the wild brassica relative Arabidopsis thaliana (accession Columbia) that confers broad-spectrum white rust resistance (WRR) to all four of the above Al. candida races. This gene encodes a TIR-NB-LRR (Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat) protein which, as with other known functional members in this subclass of intracellular receptor-like proteins, requires the expression of the lipase-like defence regulator, enhanced disease susceptibility 1 (EDS1). Thus, we used RNA interference-mediated suppression of EDS1 in a white rust-resistant breeding line of B. napus (transformed with a construct designed from the A. thaliana EDS1 gene) to determine whether defence signalling via EDS1 is functionally intact in this oilseed brassica. The eds1-suppressed lines were fully susceptible following inoculation with either race 2 or 7 isolates of Al. candida. We then transformed white rust-susceptible cultivars of B. juncea (susceptible to race 2) and B. napus (susceptible to race 7) with the WRR4 gene from A. thaliana. The WRR4-transformed lines were resistant to the corresponding Al. candida race for each host species. The combined data indicate that WRR4 could potentially provide a novel source of white rust resistance in oilseed and vegetable brassica crops.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Borhan</LastName>
<ForeName>Mohammad Hossein</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2. borhanh@agr.gc.ca</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Holub</LastName>
<ForeName>Eric B</ForeName>
<Initials>EB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kindrachuk</LastName>
<ForeName>Colin</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Omidi</LastName>
<ForeName>Mansour</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bozorgmanesh-Frad</LastName>
<ForeName>Ghazaleh</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rimmer</LastName>
<ForeName>S Roger</ForeName>
<Initials>SR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>D16978</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Plant Pathol</MedlineTA>
<NlmUniqueID>100954969</NlmUniqueID>
<ISSNLinking>1364-3703</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010938">Plant Oils</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C532021">WRR4 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C107657">leucine-rich repeat proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001937" MajorTopicYN="N">Brassica</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020090" MajorTopicYN="N">Chromosome Segregation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018556" MajorTopicYN="N">Crops, Agricultural</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009868" MajorTopicYN="N">Oomycetes</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010938" MajorTopicYN="N">Plant Oils</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="N">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20447277</ArticleId>
<ArticleId IdType="pii">MPP599</ArticleId>
<ArticleId IdType="doi">10.1111/j.1364-3703.2009.00599.x</ArticleId>
<ArticleId IdType="pmc">PMC6640464</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 1999 Nov;20(3):265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 May;12(5):663-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10810142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2000 Jul;30(2):95-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11017765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jan 5;291(5501):118-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11141561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2001 Jul;2(7):516-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11433358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2001;39:187-224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Feb;16(2):107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12575744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9128-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12872003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Dec;36(6):867-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Feb;10(2):71-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Sep;171(1):305-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15965251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2006 Jan;110(Pt 1):75-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16376066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 24;124(4):803-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Apr;46(2):218-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16623885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Oct;91(2):694-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Apr;10(2):168-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17300984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(2):302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17306037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Aug;9(8):1902-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17593247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Aug;10(4):415-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17631039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Aug;20(8):966-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17722700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Dec;19(12):4077-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18165328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):1091-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18198274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(2):188-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18397376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Jun 13;133(6):939-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18555767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 Jun;21(6):757-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18624640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Aug 06;3(8):e2875</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12164-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18719113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2009 Feb;118(3):565-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19005638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Feb;181(2):671-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19064707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1733-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Persoonia. 2009 Jun;22:123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20198144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Jul 26;346(6282):385-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2374611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Aug 11;269(5225):843-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7638602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1995 Nov-Dec;8(6):916-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8664502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1996 Dec;14(4):421-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8944022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Nov;8(11):2033-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8953768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1996 Dec;9(9):850-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8969533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Nov;12(5):1197-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9418057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1998 Apr;11(4):251-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9530866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1998 Aug;11(8):815-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9675895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Sep;10(9):1439-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724691</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Bozorgmanesh Frad, Ghazaleh" sort="Bozorgmanesh Frad, Ghazaleh" uniqKey="Bozorgmanesh Frad G" first="Ghazaleh" last="Bozorgmanesh-Frad">Ghazaleh Bozorgmanesh-Frad</name>
<name sortKey="Holub, Eric B" sort="Holub, Eric B" uniqKey="Holub E" first="Eric B" last="Holub">Eric B. Holub</name>
<name sortKey="Kindrachuk, Colin" sort="Kindrachuk, Colin" uniqKey="Kindrachuk C" first="Colin" last="Kindrachuk">Colin Kindrachuk</name>
<name sortKey="Omidi, Mansour" sort="Omidi, Mansour" uniqKey="Omidi M" first="Mansour" last="Omidi">Mansour Omidi</name>
<name sortKey="Rimmer, S Roger" sort="Rimmer, S Roger" uniqKey="Rimmer S" first="S Roger" last="Rimmer">S Roger Rimmer</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Borhan, Mohammad Hossein" sort="Borhan, Mohammad Hossein" uniqKey="Borhan M" first="Mohammad Hossein" last="Borhan">Mohammad Hossein Borhan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000810 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000810 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20447277
   |texte=   WRR4, a broad-spectrum TIR-NB-LRR gene from Arabidopsis thaliana that confers white rust resistance in transgenic oilseed Brassica crops.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20447277" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020